A co-crystal between benzene and ethane: a potential evaporite material for Saturn’s moon Titan
نویسندگان
چکیده
Using synchrotron X-ray powder diffraction, the structure of a co-crystal between benzene and ethane formed in situ at cryogenic conditions has been determined, and validated using dispersion-corrected density functional theory calculations. The structure comprises a lattice of benzene molecules hosting ethane molecules within channels. Similarity between the intermolecular interactions found in the co-crystal and in pure benzene indicate that the C-H⋯π network of benzene is maintained in the co-crystal, however, this expands to accommodate the guest ethane molecules. The co-crystal has a 3:1 benzene:ethane stoichiometry and is described in the space group [Formula: see text] with a = 15.977 (1) Å and c = 5.581 (1) Å at 90 K, with a density of 1.067 g cm(-3). The conditions under which this co-crystal forms identify it is a potential that forms from evaporation of Saturn's moon Titan's lakes, an evaporite material.
منابع مشابه
Discovery of Lake-effect clouds on Titan
Images from instruments on Cassini as well as from telescopes on the ground reveal the presence of sporadic small-scale cloud activity in the cold late-winter north polar of Saturn’s large moon Titan. These clouds lie underneath the previously discovered uniform polar cloud attributed to a quiescent ethane cloud at ~40 km and appear confined to the same latitudes as those of the largest known h...
متن کاملDiscovery of Fog at the South Pole of Titan
While Saturn’s moon Titan appears to support an active methane hydrological cycle, no direct evidence for surface-atmosphere exchange has yet appeared. It is possible that the identified lake-features could be filled with ethane, an involatile long term residue of atmospheric photolysis; the apparent stream and channel features could be ancient from a previous climate; and the tropospheric meth...
متن کاملSequestration of ethane in the cryovolcanic subsurface of Titan
Saturn’s largest satellite, Titan, has a thick atmosphere dominated by nitrogen and methane. The dense orange-brown smog hiding the satellite’s surface is produced by photochemical reactions of methane, nitrogen and their dissociation products with solar ultraviolet, which lead primarily to the formation of ethane and heavier hydrocarbons. In the years prior to the exploration of Titan’s surfac...
متن کاملCorona discharge experiments in admixtures of N2 and CH4: a laboratory simulation of Titan's atmosphere
A positive corona discharge fed by a N2:CH4 mixture (98:2) at atmospheric pressure and ambient temperature has been studied as a laboratory mimic of the chemical processes occurring in the atmosphere of Titan, Saturn’s largest moon. In-situ measurements of UV and IR transmission spectra within the discharge have shown that the main chemical product is C2H2, produced by dissociation of CH4, with...
متن کاملAas 09-226 Invariant Manifolds, Discrete Mechanics, and Trajectory Design for a Mission to Titan
With an environment comparable to that of primordial Earth, a surface strewn with liquid hydrocarbon lakes, and an atmosphere denser than that of any other moon in the solar system, Saturn’s largest moon Titan is a treasure trove of potential scientific discovery and is the target of a proposed NASA mission scheduled for launch in roughly one decade. A chief consideration associated with the de...
متن کامل